Description
Let $f(n)$ be a sum of digits for positive integer $n$. If $f(n)$ is one-digit number then it is a digital root for $n$ and otherwise digital root of $n$ is equal to digital root of $f(n)$. For example, digital root of 987 is 6. Your task is to find digital root for expression $$ A_1\cdot A_2\cdots A_N + A_1\cdot A_2\cdots A_{N-1} + \cdots + A_1\cdot A_2 + A_1$$
Input
Input file consists of few test cases. There is $K$ ($1\leq K\leq 5$) in the first line of input.
Each test case is a line. Positive integer number $N$ is written on the first place of test case ($N\leq 1000$). After it there are $N$ positive integer numbers (sequence $A$). Each of this numbers is non-negative and not more than $10^9$.
Output
Write one line for every test case. On each line write digital root for given expression.
Sample Input
|
|
Sample Output
|
|
Analysis
结论题:$f(n) \equiv n \mod 9$。
证明如下:
令 $$n = a_0 \cdot 10^{p_0} + a_1 \cdot 10_{p_1} + \cdots + a_{m-1} \cdot 10^1 + a_m \cdot 10^0$$ 其中 $n$ 为 $m$ 位数。则 $$n \mod 9 = a_0 + a_1 + \cdots + a_{m-1} + a_m = f(n)$$ 即 $$f(n) \equiv n \mod 9$$ 证毕。
需要注意的是,当 $n \mod 9 = 0$ 的时候,$f(n) = 9$。
读入的时候要先把数据 mod 9,否则中间计算过程会超 int
。
Solution
|
|
又是一个数论结论,结论题有时候还是挺难想到的。