Description
Let $P_1, P_2,\cdots ,P_N,\cdots$ be a sequence of prime numbers. Super-prime number is such a prime number that its current number in prime numbers sequence is a prime number too. For example, 3 is a super-prime number, but 7 is not. Index of super-prime for number is 0 iff it is impossible to present it as a sum of few (maybe one) super-prime numbers, and if such presentation exists, index is equal to minimal number of items in such presentation. Your task is to find index of super-prime for given numbers and find optimal presentation as a sum of super-primes.
There is a positive integer number in input. Number is not more than 10000.
Output
Write index $I$ for given number as the first number in line. Write I super-primes numbers that are items in optimal presentation for given number. Write these I numbers in order of non-increasing.
Sample Output
Analysis
首先,我们可以根据筛法求出 10000 以内的素数,接下来我们继续利用筛法,求出这些素数中,下标为素数的超级素数,这样我们就得到了题目中所需要的超级素数。
对于寻找一个最优的组合,我们可以使用 0/1 背包来解决这个问题,同时记录路径,最后输出最优解即可。
Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
| #include <iostream>
#include <memory.h>
#include <vector>
#include <algorithm>
using namespace std;
const int MAX = 10240;
vector<int> P, SP;
int pP[MAX], pSP[MAX], nCnt;
int f[MAX], pPath[MAX];
int main()
{
int N;
P.push_back(0); SP.push_back(0);
memset(pP, 0, sizeof(pP));
memset(pSP, 0, sizeof(pSP));
for(int i = 2; i < MAX; i++)
{
if(pP[i] == 0)
{
P.push_back(i);
for(int j = i + i; j < MAX; j += i)
{ pP[j] = 1; }
}
}
for(int i = 2; i < P.size(); i++)
{
if(pSP[i] == 0)
{
SP.push_back(P[i]);
for(int j = i + i; j < P.size(); j += i)
{ pSP[j] = 1; }
}
}
while(cin >> N)
{
memset(f, 0, sizeof(f));
memset(pPath, 0, sizeof(pPath));
f[0] = 0;
for(int i = 1; i <= N; i++)
{ f[i] = 214748364; }
for(int i = 1; i < SP.size(); i++)
{
for(int j = SP[i]; j <= N; j++)
{
if(f[j - SP[i]] + 1 < f[j])
{
f[j] = f[j - SP[i]] + 1;
pPath[j] = j - SP[i];
}
}
}
if(f[N] == 214748364) { cout << 0 << endl; }
else
{
cout << f[N] << endl << N - pPath[N];
for(int i = pPath[N]; i; i = pPath[i])
{ cout << " " << i - pPath[i]; }
cout << endl;
}
}
return 0;
|
这道题目主要考察最为基本的动态规划以及记录路径。